Preliminary communication

[{ $(\eta^5-C_5H_4CH_3)_2Yb^{III}(OC_4H_8)$ }_2(μ_2 -O)]: Ein neuer Lanthanoid (Ln)-Komplex mit streng linearer Ln-O-Ln-Anordnung

Martin Adam, Gassan Massarweh und R. Dieter Fischer *

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, W-2000 Hamburg 13 (Deutschland)

(Eingegangen den 27. Dezember 1990)

Abstract

Light-green, well-shaped crystals of the new binuclear complex: $[\{(\eta^5-C_5H_4CH_3)_2Yb^{III}(THF)\}_2(\mu-O)]$ (1), incidentally obtained from a solution of $(C_5H_4CH_3)_3Yb^{III}$ in tetrahydrofuran (THF) in the presence of glyoxal-bis(tert-butylimine), have been subjected to a single-crystal X-ray diffraction study. The crystals are monoclinic, with space group $P2_1/c$ and a 1110.4(2), b 862.3(1), c 1628.0(3) pm; β 104.69(1)°; R = 0.047 ($R_w = 0.051$). The Yb-O distance of 201.5(1) pm within the strictly linear Yb-O-Yb skeleton belongs to the shortest Ln-O bonds (Ln = lanthanoid element) so far observed.

Die hohe Oxophilie der Lanthanoid (Ln)- und Actinoid (An)-Elemente führt nicht selten dazu, daß auch bei gezielten Syntheseversuchen von Ln- oder An-Organylen ungeplant die Aufnahme von Sauerstoff aus dem reinen organischen Lösungsmittel erfolgt [1,3–9]. Die Strukturen der hierbei bevorzugt entstehenden Mehrkernkomplexe, die u.a. durch μ_n -O-Brücken (n = 2-6) zusammengehalten werden, erweisen sich zunehmend auch als für das Verständnis Ln-haltiger Hochtemperatur-Supraleitkeramiken [2] von Interesse. Als Sauerstoffquellen werden in der Regel Spuren von O₂- [3–6] und/oder H₂O-Molekülen [1,7–9] angenommen; wohldefinierte sauerstoffhaltige Vorstufen mit M=O [3,4] bzw. mit M \leftarrow OH₂ [10] oder M-OH [1b,8]-Funktionalitäten sind allerdings überraschend selten isolierbar.

Wir beschreiben hier die Bildung sowie die Kristall- und Molekülstruktur des neuen Komplexes $[{(\eta^5-C_5H_4CH_3)_2Yb^{III}(THF)}_2(\mu_2-O)]$ (1, THF = Tetrahydrofuran), welcher zugleich als erster Vertreter des allgemeinen Komplextyps: $[(Cp'_2ML)_2(\mu_2-O)]$ mit M = Ln bzw. An (L = ungeladene Lewis-Base) anzusehen ist [14a]. Auch 1 entstand ungeplant beim Versuch der Umsetzung von $(C_5H_4CH_3)_3Yb$ (2) mit Glyoxal-bis(tert-butylimin) (GBI) in THF. Während aus der bereits braunen Lösung von reinem 2 [12] auch *nach* der Zugabe von GBI wieder dunkelgrünes 2 zurückgewonnen werden konnte, schieden sich aus der Lösung von 2 und GBI bei ca. -30° C im Laufe mehrerer Wochen hellgrüne Kristalle (1) ab.

0022-328X/91/\$03.50 © 1991 - Elsevier Sequoia S.A.

Fig. 1. ORTEP-Plot und Atomnumerierung des Moleküls [$\{(\eta^5-C_5H_4CH_3)_2Yb(III)(OC_4H_8)\}_2(\mu_2-O)$] (1).

Tabelle 1

Ausgewählte Abstände (in pm) und Bindungswinkel (in Grad) einschließlich Standardabweichungen des Moleküls [$((C_5H_4CH_3)_2Yb(THF))_2(\mu$ -O)], 1

Yb-C(11)	268.8(10)	Yb-O(1) ^b	235.1(6)	
Yb-C(12)	269.1(10)	Yb-O(2) ^c	201.5(1)	
Yb-C(13)	263.2(13)	$\overline{(C-C)^{d}}$	145.1	
Yb-C(14)	267.4(12)	$\overline{C_{Ring} - C_{Me}}$	149.8	
Yb-C(15)	261.7(10)			
Yb-C(21)	277.7(10)			
Yb-C(22)	266.1(10)	Yb-O(2)-Yb'	180.0(0)	
YbC(23)	269.7(11)	Z(1)-Yb-Z(2)	124.76(2)	
Yb-C(24)	261.8(11)	O(1)-Yb-O(2)	91.76(17)	
Yb-C(25)	261.4(10)	$Z(1)-Yb-O(1)^{a}$	103.10(16)	
$Yb-Z(1)^{a}$	237.8(1)	$Z(1)-Yb-O(2)^{a}$	111.36(2)	
$Yb-Z(2)^{a}$	239.4(1)	$Z(2)-Yb-O(1)^{a}$	105.33(15)	
Yb-Yb'	403.0(1)	$Z(2)-Yb-O(2)^{a}$	113.97(2)	

^a $Z = C_5H_4CH_3$ -Ringzentrum. ^b O(THF). ^c Verbrückendes O-Atom. ^d Mittl. Abstand zwischen benachbarten Ring-C-Atomen.

Die eindeutige Identifizierung und Charakterisierung des grünen Produkts 1, dessen Darstellung noch der Optimierung bedarf, erfolgte durch eine Einkristall-Röntgenstrukturanalyse (vgl. Experimentelles [11*]). Der bislang einzige ebenfalls grüne Yb^{III}-Komplex vom Cp₂LnXY-Typ ist die Verbindung (C₃H₅)₂YbF(THF) [13]. Das ORTEP-Bild in Fig. 1 gibt die streng zentrosymmetrische Molekülstruktur von 1 wieder; Versuche, die Struktur alternativ unter der Annahme eines gleichfalls zentrosymmetrischen [Cp₂Yb(THF)(μ_2 -OH)]₂-Systems [14b] zu lösen, schlugen sämtlich fehl.

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

Komplex	d(Yb-O)/pm	Position d. O-Atoms	Ref.
$[\{(C_5H_4Me)_2Yb(THF)\}_2(\mu_2-O)](1)$	201.5	μ2-Ο	diese Arbeit
$[Yb_3(\mu_2 N_2C_5H_7)_6(\eta^2 N_2C_5H_7)_3$			
$(\mu_3-O)Na_2(THF)_2]^a$	213.0-213.8	μ ₃ -Ο	1a
$[(C_5H_5)_2Yb(\mu-O_2CC_6F_5)]_2$	217.8-220.1	$C_6H_5C(OYb)_2$	17
$[(C_5H_5)_2Yb(\mu_2 - OCHMeCOO^iBu)]_2$	224.1-229.7	μ_2 -OR	18
$[(C_5Me_5)_2Yb(THF){\mu-(OC)Co(CO)_3}]^{b}$	225.8	μ-(OC)	19
$(C_{5}H_{5})_{3}$ YbOSMe $(p-MeC_{6}H_{4})$	228.0	RR'SO	18
$[(C_5Me_5)_2Yb(THF){\mu-(OC)Co(CO)_3}]^{b}$	233.5	THF	19
$[{(C_5H_4Me)_2Yb(THF)}_2(\mu_2-O)](1)$	235.1	THF	diese Arbeit
$[(C_5H_5)_2Yb(\mu_2-OCHMeCOO^iBu)]_2$	238.3-239.5	C <i>O</i> (OR)	18
$[(C_5H_5)YbCl_2(THF)_3]$	233.6-241.7	THF	20
$[(C_5H_5)YbBr_2(THF)_3]$	233.5–242.8 ^c	THF	21

Variation des Yb-O-Bindungsabstands in verschiedenen Yb^{III}-Organylen

^a N₂C₅H₇ = 3,5-Dimethylpyrazolyl. ^b Oxidationszahl von Yb nicht schlüssig belegt. ^c Ein deutlich *längerer* Lu-O-Abstand als 250 pm ist kürzlich beobachtet worden [9].

Während die Winkel Z-Yb-Z', Z-Yb-O und O-Yb-O' von 1 (Tab. 1) denen vergleichbarer, ebenfalls verzerrt-tetraedrischer Cp2LnXY-Komplexe entsprechen, erweist sich der mittlere Yb-C(Cp)-Abstand von 266.7 pm gegenüber dem des Komplexes $[(\eta^5-C_5H_4CH_3)_2Yb(\mu-Cl)]_2$ (258.5 pm [15]) sowie auch des $[\{\mu$ -(C₂Me₄)(C₅H₄)₂}YbCl₂]⁻Anions (260.2 pm [24]) als signifikant verlängert. Der Yb-O(THF) Abstand von 235.1 pm fällt in den für Yb^{III}-THF-Addukte üblichen Wertebereich (Tab. 2). Im Hinblick auf sein streng zentrosymmetrisches Yb-O(2)-Yb'-Gerüst ist 1 am ehesten mit den Zweikernkomplexen $[(Cp_2^*Sm)_2(\mu_2-O)]$ (3, $Cp^{*} = C_5Me_5$ [5]) und [{(Ind)UBr(NCMe)_4}₂(μ_2 -O)]²⁺ (4; Ind = η^5 -Indenyl [6]) vergleichbar. Die lineare M-O-M-Anordnung sowie die durchweg sehr kurzen M-O-Abstände sprechen für merkliche O \rightarrow M π -Donorwechselwirkungen [5]. Der Abstand O(2)-Yb von 1 ist gegenüber dem O-Sm-Abstand von 3 um 7.9 pm verkürzt; diese Abstandsreduktion korreliert gut mit der lonenradien-Differenz: $r(Sm^{3+})-r(Yb^{3+})$ von 9.0 pm [16]. Tabelle 2 bietet eine Übersicht über die Yb-O-Abstände einiger ausgewählter Yb^{III}-Organyle. Angesichts des Nd-O-Abstands von nur 205 pm im Fall der terminalen Isopropylatliganden im Sechskern-Oligomer: $[Nd_6O^iPr)_{17}Cl]$ [22] sowie der lonenradien-Differenz: $r(Nd^{3+})-r(Yb^{3+})$ von ca. 12 pm [16] sind für Yb^{III}- und Lu^{III}-Alkoxidkomplexe mit terminalen OR-Liganden sogar Ln-O-Abstände in der Nähe von 190 pm zu erwarten [23].

Experimentelles

Tabelle 2

Sämtliche Arbeitsgänge wurden unter absoluter N_2 -Atmosphäre durchgeführt. Eine rotbraune Stammlösung aus 300 mg (0.74 mMol) ($C_5H_4CH_3$)₃Yb (2, dunkelgrün) und 124 mg (0.74 mMol) zuvor länger am HV getrocknetem Glyoxalbis(tert-butylimin) in 15 mL THF wurde nach 1 h Rühren, Filtrieren und Einengen um ca. 25% bei ca. -30 °C aufbewahrt. Alle 4–5 Tage wurde diese Lösung erneut um ca. 25% eingeengt, bis sich innerhalb von ca. 3 Wochen aus den verbliebenen 2-3 mL Lösung optimal dimensionierte, hellgrüne Kristalle der Titelverbindung 1 abgeschieden hatten.

Strukturdaten von 1 [11]. Syntex $P2_1$ -Vierkreisdiffraktometer, Graphitmonochromator (Mo- K_{α} -Strahlung, λ 70.9261 pm). Temp. 295 K, Kristalldimensionen: $0.25 \times 0.70 \times 0.05$ mm, M_r 822.84. Monoklin, $P2_1/c$; a 1110.4(2), b 862.3(1), c 1628.0(3) pm; β 104.69(1)°; U 1507.7(4) \times 10⁶ pm³, Z = 2, D_x 1.81 g cm⁻³: $2\theta_{max}$ 52°, μ 59.30 cm⁻¹, F(000) 979.93. Symmetrieunabhängige Reflexe: 3225, davon zur Lösung der Struktur verwendet: 2683 mit $F_o \ge 1.5 \sigma(F_o)$. Verfeinerung von 179 Parametern. Dreidimensionale Patterson-Synthese, Fourier- und "least-squares"-Verfeinerung (SHELX 76 bzw. SHELX 84), anisotrope Temperaturfaktoren für alle Nicht-H-Atome; H-Atome mit fixierter C-H-Bindungslänge und gemeinsamem Temperaturfaktor isotrop verfeinert. Letzte R-Werte: R = 0.047 bzw. $R_w = 0.051$ mit $w = [\sigma^2(F_o) + 0.00035 F_o^2]^{-1}$.

Dank. Die Autoren danken der Friedrich-Naumann-Stiftung für die Gewährung eines Stipendiums (an G.M.), der Deutschen Forschungsgemeinschaft für finanzielle Unterstützung sowie Herrn Dipl.-Chem. J. Stehr für seine Mithilfe bei der Röntgenstrukturanalyse.

Literatur und Bemerkungen

- (a) H. Schumann, P.R. Lee und J. Loebel, Angew. Chem., 101 (1989) 1073; Angew. Chem., Int. Ed. Engl., 28 (1989) 1033 und dort angeg. Lit. (b) H. Schumann, G. Kociok und J. Loebel, Z. Anorg. Allg. Chem., 581 (1990) 69.
- 2 Vgl. H. Jaeger, Adv. Mater. 2 (1990) 16; R.J. Cava, Science, 247 (1990) 656.
- 3 R.A. Andersen, Inorg. Chem., 18 (1979) 1507.
- 4 G. Bombieri, F. Benetollo, E. Klähne und R.D. Fischer, J. Chem. Soc., Dalton Trans., (1983) 1115.
- 5 W.J. Evans, J.W. Grate, I. Bloom, W.E. Hunter und J.L. Atwood, J. Am. Chem. Soc., 107 (1985) 405.
- 6 W. Beekman, J. Goffart, J. Rebizant und M.R. Spirlet, J. Organomet. Chem., 307 (1986) 23.
- 7 R.E. Cramer, M.A. Bruck und J.W. Gilje, Organometallics, 7 (1988) 1465.
- 8 W.J. Evans, M.A. Hozbor, S.G. Bott, G.H. Robinson und J.L. Atwood, Inorg. Chem., 27 (1988) 1990.
- 9 H. Schumann, J. Loebel, J. Pickardt, C. Qian und Z. Xie, Organometallics, 10 (1991) 215.
- 10 H. Aslan, J. Förster, K. Yünlü und R.D. Fischer, J. Organomet. Chem., 355 (1988) 79 und dort angegeb. Lit.
- 11 Weitere Einzelheiten zur Kristallstrukturuntersuchung können vom Fachinformationszentrum Energie, Physik, Mathematik, W-7514 Eggenstein-Leopoldshafen 2 unter Angabe der Hinterlegungsnummer CSD-55072, der Autoren und des Zeitschriftenzitats angefordert werden.
- 12 Vgl. W. Jahn, Dissertation, Universität Hamburg, 1983.
- 13 Vgl. E. Mastoroudi, Dissertation, Universität Heidelberg, 1980; B. Kanellakopulos, persönl. Mitteilung; alle sonstigen Cp₂'YbXY-Systeme sind rot bis gelb; der Komplex Cp₂*YbOCCo(CO)₃(THF) (vgl. Tab. 2 [19]) ist blau.
- 14 (a) Hinsichtlich entsprechender d-Übergangsmetallkomplexe vgl. Ref. 5 (Tab. II); (b) Wie z.B. in den Komplexen: [(C₅H₄CH₃)₂Ln(THF)(µ-H)]₂; vgl. W.J. Evans, J.H. Meadows, A.L. Wayda, W.E. Hunter und J.L. Atwood, J. Am. Chem. Soc., 104 (1982) 2008.
- 15 E.C. Baker, L.D. Brown und K.N. Raymond, Inorg. Chem., 14 (1975) 1376.
- 16 Koordinationszahl acht; vgl. R.D. Shannon, Acta Crystallogr., A32 (1976) 751.
- 17 G.B. Deacon, G.D. Fallon, P.I. McKinnon, R.H. Newnham, G.N. Pain, T.G. Tuong und D.L. Wilkinson, J. Organomet. Chem., 277 (1984) C21.
- 18 J. Stehr und R.D. Fischer, noch unveröffentlichte Ergebnisse.
- 19 T.D. Tilley und R.A. Andersen, J. Chem. Soc., Chem. Commun., (1981) 985.
- 20 M. Adam, X.-F. Li, W. Oroschin und R.D. Fischer, J. Organomet. Chem., 296 (1985) C19.

- 21 G.B. Deacon, G.D. Fallon und D.L. Wilkinson, J. Organomet. Chem., 293 (1985) 45.
- 22 R.A. Andersen, D.H. Templeton und A. Zalkin, Inorg. Chem., 17 (1978) 1962.
- 23 In metallorganischen Nd(III)-Komplexen mit terminalen OR-Liganden wurden bislang allerdings längere Nd-O-Abstände von 210.6(3) bzw. 215.2(5) pm gefunden: Vgl. M. Wedler, M. Noltemeyer, D. Stalke, U. Pieper, H.-G. Schmidt und F.T. Edelmann, Chem. Ber., im Druck.
- 24 P. Yan, N. Hu, Z. Jin und W. Chen, J. Organomet. Chem., 391 (1990) 313.